

The University of Nottingham

How to feed high yielding dairy cows to maintain milk yield and fertility

Phil Garnsworthy University of Nottingham

Outline

- Feed Intake, Energy Balance and Body Condition Score
- Diet, Metabolic Hormones and Reproduction
- Optimal Nutrition for Fertility

High yielding cows can have good fertility

Is high milk yield a problem?

High milk yield can be associated with:

- Poor fertility
- Increased disease incidence
- More lameness

THESE ARE NOT INEVITABLE

The challenge is to meet the nutritional needs of the cow!

Nutritional needs of the high-yielding cow

- High energy and nutrient intake
- A high energy diet fed ad libitum
- Managed body condition

 Not too fat, avoid excessive loss
- Balanced diet
 - Avoid excesses as well as deficiencies
 - Maybe adjust to cow's physiological state?

How much does a cow eat?

- Animal factors e.g. live weight, milk yield, condition score etc.
- Diet factors e.g.
- Dry Matter, Digestibility
- Forage Palatability
- Acid Loading of Forages
- Long fibre (saliva buffering)
- Total Mixed Rations

How much does a cow eat?

- Feed access (trough space 0.5-0.75 m/cow)
- Feed availability (ad-libitum is 110%)
- Ad-lib fresh clean water
- Number of feeds per day
- Remove old feed
- Comfortable bed
 for rumination

How much grass does a cow eat?

Potential Milk Yield from Grass

		Grazing time (h/d)		
(kg/d)	(kg/d)	early	mid	late
Б	10.6	6	7	9
15	13.5	8	9	11
25	16.4	9	11	14
35	19.6	11	13	16

Cows will not graze for longer than 9 hours per day

Cows prefer to stay indoors!

Negative Energy Balance

Garnsworthy and Topps, 1982

Garnsworthy and Topps, 1982

Change in Condition Score with Genetic Merit

Effect of BCS at Calving on change in BCS (0-10 wks)

23 studies, 81 treatment groups, >5,000 cows

Garnsworthy, 2006

Negative Energy Balance and Resumption of Oestrous Cycles

Butler, 2004

Effect of BCS change on Pregnancy Rate to 1st service

BCS and ketosis

	Odds ratio for
BCS at calving	ketosis
<=3.25	1.0
3.5-3.75	2.4
4.0-4.25	2.3
>=4.5	2.8

732 cows; P<0.01

Gillund et al. 2001

BCS and Fatty Liver

BCS at calving (1-5 scale)	2.82	3.93
BCS change 0-8 weeks	-0.52	-1.20
Liver fat week 1 (% liver volume)	15.2	30.8
Liver fat week 4 (% liver volume)	5.2	23.9
Dry matter intake (kg/d)	17.2	15.8
Milk yield (kg/d)	30.9	26.5
Mastitis	3	11
Lameness	4	7
Other disease incidents	6	12

BCS and oxidative stress Cows calving with BCS >3.0 had: Higher:

- Lipid mobilization
- NEFA, BHBA

Reactive oxygen metabolites (ROM)

Thiobarbituric acid-reactive substances (TBARS) Plasma thiol groups (SH)

Lower:

Superoxide dismutase

Conclusion: BCS >3 = greater oxidative stress

Bernabucci et al. (2005)

Modern Holsteins do not have to lose BCS

Yan, Mayne, Keady, and Agnew (2006)

Concentrates HC 60 - 50 - 40% LC 30 - 20 - 10% change at 100 & 200d

Week of lactation

Energy Balance Summary

- Prolonged periods of severe negative energy balance must be avoided
- The main factor affecting loss of body condition is Body Condition Score at calving NOT nutrition
- Modern Holsteins are genetically thinner, so cows with BCS >3.0 at calving will lose ≥1.0 BCS units and be at risk from poor health and fertility

Outline

- Feed Intake, Energy Balance and Body Condition Score
- Diet, Metabolic Hormones and Reproduction
- Optimal Nutrition for Fertility

High and Low genetic merit dairy cows Days to first ovulation, Growth Hormone and Insulin

	First ovulation	GH	Insulin
	days	ng/ml	ng/ml
High merit	28.2	14.2	0.35
Low merit	20.1	10.0	0.46

(Gutierrez et al., 1999; 2006)

Can we increase insulin by nutrition?

Fat and Starch

Can a high fat or high starch diet overcome the problems of negative energy balance?

Energy Status: Effect of high dietary starch or fat on body tissue energy balance

Effect of dietary fat content on plasma insulin

Effect of dietary starch content on plasma insulin

Garnsworthy et al. 2008 J Dairy Sci 91:3814-3823.

Effect of dietary starch content on ovarian follicles

High starch increases plasma insulin and ovulation rate

Gong, Lee, Garnsworthy, and Webb (2002) Reproduction, 123, 419-427.

Insulin Conclusions

- Improving insulin status of dairy cows encourages resumption of oestrous cycles
- Insulin status can be improved by high starch / low fat diets – but not too high starch or too low fat
- A note of caution ...

... beware oocyte quality!

Ultrasound-guided ovum pickup (OPU)

8-d blastocyst

Day 8 blastocysts used for differential staining

High Insulin reduces oocyte quality in dairy cows

56 OPU, 243 oocytes **Fouladi et al. (2005)**

High Fat produces better oocytes in dairy cows

144 OPU, 1051 oocytes

Another Insulin Conclusion

For good oocyte quality and blastocyst development we need low starch and/or high fat

i.e. a LOW insulin diet !!

Progesterone and embryo development

Effect of dietary fat concentration on Progesterone at Day 5 of the Oestrous Cycle

Garnsworthy et al. 2008

Summary: Fertility and Insulin Early resumption of oestrous cycles High insulin Good follicular development **High insulin** Good quality oocyte Low insulin – High fat Establishment of pregnancy (High Day-5 P4) Low insulin – High fat

A conundrum!

Outline

- Feed Intake, Energy Balance and Body Condition Score
- Diet, Metabolic Hormones and Reproduction
- Optimal Nutrition for Fertility

Nottingham Pregnancy study

High insulin cycling diet (18% starch, 3.9% fat) Low insulin mating diet (10% starch, 5.3% fat) 4 dietary treatments, 60 cows (n = 15) Diets changed after cows started to cycle (\approx 50 d) Days 0 to 120 of lactation

- 1. Worst for reproduction (LH)
- 2. Intermediate A (H)
- 3. Intermediate B (L)
- 4. Best for reproduction (HL)

No treatment effect on:

- Milk yield, energy balance, BCS
- Days to first progesterone rise (29 +/- 5.4)
- Days to first insemination (74 +/- 7.6)
- Proportion of cows served (87%)
- Days to conception (78 +/- 12.2) (for cows pregnant at 120 DIM)

Pregnancy rate at 120 days with diets designed to improve cycling (High Starch) or oocytes (High Fat)

Garnsworthy et al. (2009) Reproduction 137, 759-768

Overall Fertility Conclusions

- A high insulin diet improves follicular development in early lactation
- A low insulin diet improves oocyte quality
- For best results, feed the right diet at the right time
- (Or MAYBE avoid extremes?)

Conclusions

- Nutrition can have profound effects on all aspects of production, health and reproduction
- Negative energy balance must be minimised by controlling body condition in late lactation
- Avoid extremes of fat, starch [and protein] an excess can be as bad as a deficiency
- Resumption of oestrous cycles is encouraged by high insulin, oocyte quality by low insulin
- Optimum nutrition at each stage of the lactation cycle significantly improves health and fertility

Thank you for your attention